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RAREFACTION SHOCK POSSIBILITY
IN A VAN DER WAALS-MAXWELL FLUID

ABSTRACT

The rarefaction shock is found to be impossible practically in

an equilibrium Van der Waals-Maxwell fluid, in and across all phase
regions. The existence of this. type shock depends explicitly on the
constant-volume specific heat, as well as the pressure equation of

state The form of specific heat assumed here includes contributions
from translation, rotation, and vibration energies of the molecule;
Einstein functions are used to represent the latter. In particular,

the vaporizing expansion wave in the saturated liquid phase cannot be
discontinuous. Metastable states of supersaturation are not considered.
Despite the results for this theoretical model, the necessary conditions
for the rarefaction shock are found to be satisfied, in principle, for

a small region near the critical point of a real two-phase fluid
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I. INTRODUCTION

In most fluids, including the ideal gas, an initial compressive
disturbance steepens with time into a compressive shock discontinuity,
while an expansive disturbance flattens out, never producing a dis-
continuity. This type of response depends on the equation of state for
the fluid. In principle, the possibility of contrary responses to
initial disturbances exists in fluids cbeying certain state equations.
For example, Paxton' discusses the rarefaction shock possibility in a
plasma carrying a large electrical current. And Zeldovich and Raizer®
cite a possible rarefaction discontinuity in the gaseous phase of a
Van der Waals-Maxwell fluid near its critical point; their treatment of

this problem is a reproduction of one given earlier by Zeldovich® in

10h7
AT e

A detailed analysis of the shock discontinuity for arbitrary state
equations was made in 1942 by Bethe® in a report of initially limited
distribution. And it is shown in [4] that the probability of satis-
fying a necessary condition for the non-MHD rarefaction shock in the
gaseous phase of a substance is practically non-existent, including
the specific fluid treated in [2] and [3]. The equilibrium coexistence
phase of beth liquid and vapor was not considered.

In this paper, the two-phase region of the Van der Waals-Maxwell
fluid is examined. Motivation for this investigation is provided by
observations on exploding wires. The early electrical resistance of

~nr

many exploding wires fits g model which assumes a vaporizing expansion
wave proceeding radially inward from the cylindrical surface, shrinking
the conducting cross section of the intact molten interior 558, The
istence of such a wave can be predicted from a two-phase fluid medel;
and the Van der Waals-Maxwell fluid yields wave velocities which are in
fair agreement with experiment7. It is of interest to know whether
this model will predict a steepening of this expansion wave into a

finite rarefaction shock. Although the discontinuous part of the

¥References are found on page 29.



expansion is not an absolute nececsity for the experimental interpre-
tation, it would ascict in offering a cimple and conceptually plaucible
explanation for the resistance behavior.

This treatment is limited to thermodynamic equilibrium, thereby
astable conditicns such as superheating or supercooling of
one of the phases. Although ever mounting evidence shows the Van der
Waals-Maxwell model is not an accurate description in the rriti
region of a fluid, it is still valuable for its simplicity, and as a
standard of comparison for recent empirical proposals of state
functions there. Recent computations of its coexistence properties
have been made by Barieaua, and we adopt his notation for the scaled
variables used here.

We find that the rarefaction shock possibility is even less
likely in the two-phase region of this fluid than in the single phase,

where it has a
wiere 17 nas a

lready been shown to be practically impossible*. Then
despite the results with this model, we show by direct use of steam
tables, as suggested by Novikov®, that the rarefaction shock possibil-
ity cannot be dismissed over a small part of the wet vapor state of

steam near critical.

II. DISCONTINUITY CONDITION

Let P, V, T, and S be pressure, specific volume, temperature, and
specific entropy respectively. The change of entropy across a dis-
continuous transition of a system initially at the state (Po, Vo, To,
S, ) to the state (P, V, T, S) is given by

S -8 = - (V -V, )ﬁ(%)s} /(12T ) + .-, (1)

This expression follows from several properties concerning the
mechanical discontinuity relations which are proved by Courant and

«10 PPN L N :
he!®. These properties are: a) the pressure function P = G(V)

riedric
of the transition Hugoniot curve makes a second order contact with the

pressure function P = g(V) of the adiabatic isentrope at the conditions

10



of the initial state; and b) the entropy change along the Hugoniot

curve is third order in volume change from the initial state with
asy) _ <d28> _ (d?s B d2G> i .
<dV . avg’g = 0, and FTa . (avg o/(2To). The first condition

as h <
implies {<—:§) } = (3:%) ; making a series expansion of (S-S,) in
(\oV=/q ), \dv< /, =

terms of (V-V,) then results in the first non-zero term shown in Eq.
(1). Not all gas dynamic transitions possess the foregoing simple
properties; a notable exception is the detonation wave. For our
purpose, we have assumed that the fluid on both sides of the disconti-
nuity obeys a unique state equation, so that the transition is neither
exothermic nor endothermic; a discussion of the Hugoniot curves for
these latter transitions is given by Hayesll.

2
The form of Eq. (1) shows that for the usual fluid where <§ﬁ§> is
/¢

positive, the transition which increases the entropy forces V <V,, as

2
in a shock compression. Were (%vg)s negative, however, then the
condition for increased entropy would be V > V,, corresponding to the

rarefaction discontinuity. The possibility of the rarefaction shock

2
process is seen to depend on (é—gﬁ being negative. It i1s this quanti-

OVe/,
ty which we investigate for the Van der Waals-Maxwell fluid. The state

functions P, E, and S (where E is the internal energy) are expressed in
terms of the independent variables V and T. We will use the
differential operator
() - (2g) (2 (2)
— = | =— —_— + | =
\5v/, = \&v/, \5T/, * 5/, (2)
along with
TdS = dE + PaV (3)
and the identity
/aE> (3P
= = — - (L
\5v/, =T\s§¢), - P - ()



Both dE and dS are assumed exact differentials of V and T within given

V, T, regions. The constant volume specific heat is Cy

[

\
assumed never negative. From Eq. (3) one finds y%%) =
S

i

(BE .
3EDV’ and ic

P directly,
and application of operator (2) to E, and using (4) results in

/
(§2> = - (T/Cy) 1§E> ; again using Eq. (2) on P results in
oV/s \OT/,

~?,—i)s = - (1/¢y) (%%)v + (%—f;’\)T : (5)

\

With w the adiabatic (and in this instance, isentropic) sound speed of

the substance defined by w° = - V® <§%>
S

seen to be - w2 /V?., The sound cpeed it expe-ted to be real and finite

, the right side of Eq. (5) is

for a well-behaved fluid; since T and Cy are always positive, then w

o) .
will certainly be real if <5%> < 0. This latter condition holds for
T
most substances, including the Van der Waals-Maxwell fluid, which we

now describe more completely.

I1II. FLUID MODEL

The fluid may be either a liquid, vapor, or an equlibrium mixture
of the two phases. For either of the single phases, the pressure is

given by the Van der Waals function,

P, (V,T) = {RT/(V-b)} - a/v®, (T > 0, V> 0) (6)

where R is the gas constant for unit mass and a and b are constants typi-
fying the substance. By choosing for unit mass the molar mass of the
substance, one replaces R with R, the universal gas constant. The (V,T)
region where Eq. (6) applies is T > 0, V> 0 except for the region of
phase coexistence. The coexistence region is defined by T < T; (where

subscript c always denotes critical conditions) and Va(T) € V < VI(T),

12



with the loci V5(T) and V, (T) specified later. Within the region where
Eq. (6) applies, a differentiation by T of Eq. (4) chows that C, iz
independent of V. Outside coexistence, the fluid consists of a
single phase, either liquid or vapor. ZFor convenience we label the
regions T < T., b < V < V5(T) as the liquid phase, and assert the vapor
phase occurs in both T2 T., V2 b, and in T < T., V1 (T) < V.

The pressure in the equilibrium coexistence region is not P, (V,T),

but is instead the vapor pressure function, PA(T), independent of V.

This function is not defined explicitly; it must satisfy two conditions:
a) the pressure across the coexistence boundary must be continuous, and
b) the chemical potential, or Gibbs free energy function E - TS + PV,

s constant for fixed T within coexistence, and 1s continuous across the
boundaries. Both these conditions are satisfied by the Maxwell rule:

for any T = T,

vy (T)

r
J 2 AY
Vs (T)

d

w (V,T)av = P, (T) {vi(T) = v5(T)

with the subsidiary conditions Py (Vi ,T) = P, (T) = Py(Vs,T). Eq. (7)
and its subsidiary conditions fix P, (T) and the Vi (T) and Vi (T) loci of

the coexistence boundary. This Maxwell rule implicitly im

e
restriction for fixed T < T, that C, (T)(liquid) = C, (T)(vapor) = CS(T).

:!

Although there is another suggested rule similar to Eq. (7) which

s condition on the specific heatslz, it is less convenient
because it requires additional information about the difference of
these specific heats. For simplicity, we confine present attention to
the Van der Waals-Maxwell fluid with the coexisting phase region
governed by Eq. (7).

The isotherm segments of P, (T) are isobaric and extend from Vs (T),
the saturated liquid locus, to V;(T), the saturated vapor line. By
replacing those portions of the mathematically defined but thermo-
dynamically unacceptable isotherm segments of Eq. (6), with the accept-

able isotherm segments of P,(T) in the coexistence state, we have

13
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might be positive for thic fluid,

OJ[ o/

{
removed any possibility that \

This fact insures that the right hand side of Eq. (5) is negative in
} &

[oh)
wn

all regions of interest.

We review briefly the conditions

h
Q
‘3
oy
l_l
S
<+
oy
@
}_l
H
o}

phace of thi
fluid. Allowing C, to be a function of temperature alone, and

successively applying operator (2) twice to Eq. (6), one findc

2°p
(55) = try/(v-o)°) f8(m) - v(v,m)) , (8)
S

B(1) = (2 + R/ + R/SY) - 2(rfcd)? HGLR), (9)

Y(V,T) = 6a(V-b)®/(RIV?). (10)

We see two ways the right hand side of Eq. (8) can be negative.
, if ¢(T) < 0, the rig
Y(V,T) is > 0, and V 2 b. TFor ¢(T) < 0, the rate of changes of CJ(T)

with increasing T must be large. If &(

might sustain a rarefaction shock., This fact may be seen by observing
that the Van der Waals pressure function reduces to that of the ideal
gas when both constants a and b of Eq. (6) are identically zero; the

right side of Eq. (8) then becomes ¢{(T)RT/V®, with sign depending on

VL ava/ V5 WUl wdnil WL LAl e

7

¢(T). Thus, negative #(T) permits both the ideal gas and the single
phases of the Van der Waals fluids to meet the necessary condition for
the rarefaction shock. The probability of negative @(T) will be
discussed in Section VII.

But there is a second way that the right side of Eq. (8) might be

Jad
g



negative. This condition occurs if
¥(v,T) > #(T) (11)

for a particular (V,T) domain. The constants & and b can be expressed

in terms of the critical values of P, V,and T, as b = Vc/3,

L3Ar DU = (2/2\nm Mhn 190 A+
% e L 1 C

cVe T \35/V)Ric. unac Y(v,T)

o — [o/2Q\pm 17 avnA +lha el e 3 N2
a = \Y/O)Ric Ve ana uwne reia ion v,

(4/3)Vc ; meanwhile
the permissible T values are bounded below by T(min), corresponding to

8)

~7

valies alon
aiues aior

o the coexistence hoimnd
V 1g Thne cee nce po a

Ciil

2
the single phase region. At V = (4/3)V¢, T(min) = .9834 T,; if C, is

constant with T, so %égﬂ-@l = 0, then inequality (11) can be satisfied

for the dimensionless quantity (CS/R) 2 17.5. Very large values of

a o a(c® /») o
(Cy /R) and/or === are needed to fulfill inequality (11), even when

aT
the specific volume lies in a small neighborhood slightly larger than
Aritdanl ralime Arnin twe defar A3 amiacinn of (0 /D +a n Taraw aaetdan
criuvital voiruwuiace, n%a;ll wWo uUucircl ULioCUoD 1LUILL UL Uv/n LU a JLauvcl oTLULLIULL

V. COEXISTENCE STATE

A, Justification of Model

This section deals only with the (V,T) region of coexisting phacses
of the fluid. However, some justification and caution is needed in
applying continuum fluid mechanical concepts to this regime. The
vapor pressure function, P, (T), used in the equilibrium two-phase region
applies to a variety of combinations of coexisting liquid and vapor
phases, requiring only that the phases have equal temperature and
pressure. For example, the entire liquid phase could be located at one
end of a container, with the vapor phase at the other; in this instance,
a unique "sound" speed for the system would appear unjustified. The
two-phase fluid mixture could approximate a continuous medium, pro-
ther so that the mixtu

o n B Ye
LI U v nav LT A A

a small volume appears homogenous on the length scale of that volume.

15



If, in addition, the dimensions of this volume are rmall enowrh that
the mechanical relations may be reasonably approximated by differential
equations, then continuum fluid mechan ran be used. We accume that

ic
these conditions apply in our further treatment of the coexistence ctate,

13

In this connection, Cowperthwaite and Ahrens™” have recently given a

discussion of the thermodynamics of the adiabatic change of a system
consisting of two phases at the same pressure. They find several wayc
such a change is also isentropic; one of these requires reversible heat
exchange between the phases, with the mixture composition changing so
that the phases remain in chemical equilibrium. Using the vapor
pressure function, P, (T), defined by Eq. (7) as the pressure state
equation for the coexistence region, incures equilibrium of both

ical potential and pressure; thus, infinitesimal adiabatic changes
in this two-phase system will also be isentropic. The question of
whether the finite adiabatic change of this type remains isentropic
requires further investigation, and it is this problem that we are

considering.

B. Specific Heat

£\ T

By using P, (T) for P in Eq. (4), integrating with respect to V
from Vs (T) to V(T), where {Vs(T) < V < V1 (T)}, and differentiating the

result by T, one obtains the specific heat at constant volume for the

coexistence region. It is C,,(T), given by

—~~
3
~—
+
=3
N
+3
~
+
~
<
3
<
w
~
=
g
[
<«
—~
-3
~
-
—
r__l
no
g

where A(T) = V5 (P, -TP, ' + a/Vs?®) and J(T) = TP,”, where the prime
hereafter signifies ordinary temperature derivative, and Cy(T) is the
constant volume specific heat outside coexistence. As expected,

~ fvr o

. o« >
Cya(V,T) is a linear function of V. A further useful relation can be

obtained from Eq. (7), viz.,

TP, '- P, = a/(V1Va). (13)



Eq. (13) results from differentiating Eq. (7) by T, applying the sub-
ons, multiplying the result by T and subtracting Eq. (7)
from both sides. Computed values from Eq. (7), as well as limiting

’

values as T —» T show that P, /, P,”, and Va are all positive for

TS T, It follows that J(T) is always positive in coexistence; since

...... L/ P S

-y ~ T . — . I T A LRPUIgN |

Vi = Vs, using Eq. (13) in the definition of A(T) shows that A(T) is
never negative here. Therefore, CVA(V T) is positive; since

Vi 2V 2V, for any fixed T, one finds the inequality

0 < Cyp (Va,T) < Cyp (V,T) < Cyp (V1 ,T). (14)

C. Coexistence Isentropes

Since P, (T) is independent of V; using P, (T) for P in Eq. (5)

ViS4 Y

ives (égA}s = - (7/Cyi (P4 ')®. Using operator (2) on this latter

expression, remembering that C,, depends on both T and V, results in

3%p, > 3 1\3
(-a-\—,z*—) = (7/¢y,°) (B 7)° L(V,T), (15)
where .
L(v,T) = {1433(T)/P, '} Cyx - T @%L) . (16)
v \1O/)

From Eq. (12) one finds

OCy, aC
{38 v} = {3) o} Gwder@  an
where
08, wap-aewmn o
We show in the appendix that J/(T) is positive for T < T With
V 2 V5 (T) in coexistence, the following inequalities come from Eq. (17)
r/aCu A \\I r/aC\l A \ Vg \1 {(ac \ e 1
\/ 7 M -~ ! A r .- - ~\
WS, (a0 = (55, (vny s{(5gy, (sm)p. (19)
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I3 (O V)

Neting that P,

4-1a

and J(T) are positive quantities, one can make use of
Y \ - I TP R . .
(16) and (15) to obtain the further inequality

A
relations (14), (19),

L(v1,T) < L(V,T) < L(V5,T), (20)
and consequently
/22T \ N /22 p hY 2 \
o~ P o 8°P
{&), mo}s {5 ) v} = {§F) Wl g

the second volume derivatives of
d

the isentropes in coexistence is bounded between the value on the
saturated liquid and vapor lines, the smaller being on the latter locus.

Thus, examination for the rarefaction shock possibility can be made at

condition be met anywhere in coexistence, i1t must alsc be met on this
locus. We recall from Section IV that the most likely neighborhood for
the occurence of this condition in the single phase was also adjacent

to the saturated vapor line, i.e., for V=~ (4/3) V¢ and T = T(min).

=

2
By Eq. (15), the sign of (%vgi) is seen to be that of L(V,T);
\ /S

setting V = V1 (T) in Eq. (16) gives L(V1,T) on the saturated vapor
D

locus. Defining Z(T) = 1 + 3J/P,/, and arranging the terms to show
explicitly the dependence on the specific heat of the single phase, cne
obtains
L(V1,T) = z¢y - T(c)’ + K(T), (22)
with
k(T) = (1) - ™(T), (23)
0
M(T) = Cys (V1,T) - Cy = A + {V1-Va} J(1), (24)
and

-
[@0]



n(T) = [J—M——V—q (V1,1) = A" - 3V " + ("a-V5) I (25)

All the terms making up the function K, M, and N are explicit functions
of T, independent of Cy, and can be computed numerically from Eq. (7).
he numerical methods are satisfactory, except when T approaches T¢;

but here the limits of the functions can be found from a series
expansion around TCB. The computations are conveniently made in terms
of the reduced variables formed by scaling P, V, and T by the

critical values.

The limits at T. of most of the functions making up Z(T) and K(T)
are given in Ref. [8]; the few others needed are shown in our appendix.
The forms of Z(T) and K(T)/R are displayed in Figs. 1 and 2; they are
both always positive, monotone decreasing with T, and have their
smallest values of 8.200 and 31.86 R, respectively, at T = T.. With
Z and K always positive in coexistence, Eq. (22) shows that if €§ is
constant with respect to T, {(C2)’ = 0}, there is no chance of a rare-
faction shock in the two-phase region. This fact contrasts with the

thermodynamic behavior of this fluid in the adjacent vapor phase, where
321\\
a constant but large value of CJ permits ( ) to be negative. The

only possibility of negative L(V,T) rests with T(C})’ being larger than

7c% + K(T), or in the form of an inequality,
. q

T(cO/R) 2 [K(T)/R] + Z(T) (c{/R)> 8.2 (c/R) + 31.86 . (26)

D. Coexistence Boundary

For completeness, the change of (gV

boundary should be investigated. Thus, a comparison of (2, ) for the
\NQ

7/

across the coexistence

<3 "tJ

AP\
single phase isentrope with <S%L of coexistence, each evaluated at
s

the same boundary point is needed to show the sign of any discontinuity



T/T
W/ I¢
. X . ; N - @°P, /4P, o
Figure 1. The dimensionless function Z(T) = 1+3T W/ﬁ“- ve T/T¢.
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—v> across this boundary. This problem on the phase boundary for
s

the liquid-vapor transition has previously been treated in Ref. [4],
for an arbitrary equation of state; the discontinuity was always found
to be positive. The Van der Waals-Maxwell fluid is no exception to
this rule. We recall from Section I that (§§>s is everywhere negative

for this fluid. Omitting considerable algebra we exhibit the result

3P, \ AP, \ i : .
for & = <S§P- <8V , where all quantities are evaluated at a point

on the phase boundary, either saturated liquid or vapor; the product of

8 and Cya{(V,,T) is

8¢y, (v,,m) = - (/) (o) {ed + s (B ) -0 G, e
with
£, = ™0, {v,(T) - Va(T)} (28)

and subscript < taking the value 1 or 3, depending on whether the

boundary point lies on the saturated vapor or liquid locus, respec-
/aP \

ively. The quantity f, is either positive or zero, while (SVL) is
3V /g

always negative, so the contribution from the second term of Eq. (27)

is either positive or zero because of its negative sign. Meanwhile
(SVL' is never positive on and outside the coexistence boundary,

while C,, is always positive, so & is never negative. Hence, no rare-

/
faction discontinuity can occur because of a negative jump in (z%

across the coexlstence boundary.

VI. SPECIFIC HEAT FUNCTION

For this fluid, a necessary condition for the rarefaction shock

depends explicitly on the constant volume specific heat. We explore
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function., Choosing the same units for CS and R, the ratio CS/R is

dimensionless. To good approximation, Cs/R can be expressed in terms
of translational, rotational and vibrational energy contributions,

PR 14
respectively, as™ 7,

(cv/R) = (cy/R)(tr.) + (CY/R)(rot.) + (C/R)(vib.). (29)
We assume
(cv/R)(vib.) =Z g, (x, ), (30)
1
where all sums range from 1 to A, where A is the number of vibrational

modes, and g, (x,) is an Einstein function given by

g, (%x,) = (%, /sinh x,)?, (31)

Eq. (30) is

usually applied to a polyatomic gas, where the first two terms on the

with x, = 6,/(2T), and 8, a constant for the ith mode.
right sum to a constant value B/? ranging between 3/2 and 3, according

to the molecular structure, and A = 3N - B where N is the number of

atoms per molecule. If N > 2, B is always 6, a condition

assume. If ical modes {electronic vibration) are also

]
e
ct

becomes correspondingly larger, as N must now include the
however, the 6, for the optical modes are usually so high

little ic heat at temperatures less

(o0
A\AVAV)

(29) and (30), it follows that

we henceforth

included, A
electrons;

that they add

(32)



This function k, (x,) has a maximum value of .6757 at x; = 1.7hb; while

g; (x,) has its largest value of 1 at x, = 0. Therefore,

T(cS/R)’ < .676 A, (34)

where equality is approached only if all 6, have the same value, and
q 1

k, is at its maximum; and

Ejgi (x,) = A, (35)

1

where the equality is approached only if every 91 € T, so each x, is

nearly zero. With the assumption B = 6, use of Egs. (29) and (35) gives
3<cl/Rs3+A. (36)

VII, RAREFACTION SHOCK POSSIBILITY
With the preceding model for the specific heat, one may now assess
the chance of satisfying the necescary condition K%%E)s < 0 for the
rarefaction shock in this fluid.
A. Ideal Gas

One seeks conditions where ®(T) might be negative. Making use of
the strongest form of the inequalities Egs. (3%)-(36) in the definition
of #(T), yields the very strong inequality

¢(T) > 2 - 676 AJ2T7 . (37)

One concludes that ¢ could not possibly be negative for A less than 80
modes; this condition appears to exceed reality sufficiently as to be

practically impossible. Actually, a weaker form of inequality indicates



A must be very much larger, as pointed out in Ref. [4]. TFor example,

J
assuming all 8

2(x, cosh x, - sinh x; )/sinh %, and Wy increases monotonically with

x, from its zero minimum value with respect to x, , occuring at x, = O.

t

1

For large x,, (f,/g,) ~ 2(%, - 1), and W,y (x;) a:(8/2h3)x1; this latter
quantity approaches the value 2 for x, ~ 61, so that A ~ 10*°, Thus,
the rarefaction shock possibility in the ideal gas is effectively

ruled out.

B. Single Phase, Van der Waals

Here the test is to see if E

1

show the largest value of G(V,T) to be 2.184 at V/V. = 1.483, and

T/Te = .9711 (a point on the saturated vapor line). Here Cy/R 2 16.65
will satisfy Eq. (11), independent of (CJ/R)’; attaining this condition
requires at least A = 14 modes, each one almost completely excited at a

temperature near critical for the substance.

C. Eguilibrium Coexisting Phases

For this domain, one searches for conditions which might satisfy
inequality Eq. (26). Again making use of Eqs. (34) and (36), one finds
that Eq. (26) cannot be fulfilled for A less than 83 vibrational modes,
each of whose 8 ~ 3.5 T¢ for the substance. This restriction for
practical purpcses nullifies the rarefaction shock probability in the
equilibrium coexistence state of this fluid.

VIII. COMPARISON WITH STEAM TABLES

Following the appearance of the early analysis by Zeldovich for
the vapor phase of the Van der Waals fluid, a short treatment by

€5



Novikov® was given for the two-phase state of steam. By using an
t

»

tic differential equation of state and the resulti

] P S I U
ea vnat vae

jol)

formula with (unreferenced) steam tables, Novikov conclu
necessary condition for the rarefaction shock could be satisfied in the

two phase region near critical. For comparison, we show several

equil

brium isentropes for steam in t
This is done by noting that the entropy is linear in V on the isobaric

isotherm segment in coexistence; or, for fixed T and P,
S(V,T) = S(sat. lig.) + 8s{v-v(sat. 1iq.)}/{v(sat. 1ig.) - v(sat. 1lig.)},

where 8S is the vaporization entropy for this T. Thus, one can find
ables a value of V for fixed S and various T (or P).

Numerical differentation of the resulting equilibrium isentropes then

2

o . . . . .

shows where <gv§ < O in coexistence. We confirm Novikov's rconclusion

s
b

for a region between P/Pc ~ .92 and 1.00. Fig., 3 shows an enlarged
view of the coexistence boundaries for both steam and the t
Van der Waals-Maxwell fluid, as well as representative isentropes for
each. The steam region where (%%g) < 0 is enclosed by its saturatior
S

locus and the nebulous hatched boundary indicated at P/P, ~ .94. This
diffuse lower boundary could not be more precisely defined because of
the lack of significant figures in the steam table data. All but one
of the isentropes for the theoretical model correspond to CS/R = 3/2.
Two theoretical isentropes passing through the critical point were
computed, one for Ce/R = 3/2 and one for CS/R = 5/2; this latter one
has only a slightly larger slope than the former.

Fig. 3 alsc illustrates a common fault of the Van der Waals-

Maxwell model in the ~ritical re ts scaled saturation locus is

= @®
N
e}

=

=

T
much less flat at critical, and s well inside that for steam; the

e
same behavior is noted with respect to many other substances!®,
Although the particular steam tables used here indicate the necessary

condition for the rarefaction shock is met in a small coexistence region
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near critical, it ic by no means certain that surh a discontinuity would

actually develop. The critical temperature for steam ic quite low
{T, (steam) = 647° K} and therc is a good possibility that metactable

supersaturation of the liquid phase would occur during adiabatic

dpcl

expansion. BSuch a metastable state is less 1likely at mu'h higher
temperatures. One might then conjecture that if correspondence holdc
between steam and a fluid with a much higher critical temperature, the

. . . N
stance might support a rarefaction discontinuity.

This investigation for the rarefaction shock condition in an
equilibrium Van der Waals-Maxwell fluid has shown it to be practically
impossible in and acrocss all phase regions. Comparison with steam
tables, however, shows that a necessary condition for the disr~ontinuity
does exist in principle, in the equilibrium coexistence state near

critical. The Van der Waals fluid model used here is recognized as not

ct+

accurately describing a real fluid in the critical region. Here

might prove useful to perform a similar investigation using more modern
concepts about critical state behavior'®. However, decspite promisi
progress, these modern appreoaches of the critical region do not yet

appear to have produced a sufficiently simple and differentiable state

equation as to enable completion of such an investigation.
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across a liquid-vapor transition boundary*, some solid-solid and liquid-
solid phase transitions do contain the necessary conditions for this
discontinuity. These are mentioned in Refs. [4] and [17], with come

A T a1l A3 A

experimental evidence for their existence offered in Ref. [19].
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APPENDIX

The limiting values of many quantities making up the L(Vy,T)
defined in Eq. (22) for the coexistence state are tabulated by Bariea® .

n )
His method employed a power series expansion of reduced dencsity along
+ 3

ary near critical. The reduced variables were

expressed in terms of these ¢; and their scaled temperature derivatives.
The Maxwell rule gives a functional relationship between @1 and o, ;
defining y = @3 - 1 and x = 1 - 03, the power series expansion using

J-Ll.-\ Masrrall 1l a3
LIIE MaXwoe Ll uire 1

n

i
y = z ax . (A1)
i=1

= (1/5) and

Barieau found the first three coefficients to be a3 = ap
our functions

1
ag = (1/25). 1In order to find the limit at critical of
B/{T), N{T), and K(T) it was necessary to fi
coefficient, which we determine to be ay = (19/350). It 1s understood
that within coexistence the pressure, P, is the vapor press A
further adopt the notation that a prime on a reduced variable den
differentiation by reduced temperature, Y. Then our dimensionless
function Z(T) = 1 + 3yB”/B’ has the limiting value at critical of 8.2.

4

Making use of a,, we further find that the critical limit of B" 1

[¢s]

-

(]

5 CQ&L

o ”
5954, The fun (o /m 2\ e o 8 }

unction J'(T) is equal to (P¢/T.®)1yB
limiting value at critical 15.1954 (Pc/Tcz). We show in Fig. L the
)

the behavior of J/(T (Tcz/Pc , always positive in the range of interest.

, and has the

[

The form of N(T) given by Eq. (25) does not permit findin

0]

limit simply by taking the sum of the limits of each term on the right,

a
because these term limits are + « and - «; instead, a tedious expansion

value of
31
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Figure L.
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then Lim {X(T)/R} = 31.860.
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